What graph can y = cos^2(x^2)/ x^2 have, for x > 0 ?

Right! Analysing the function "y" we can see that the graph should not exist below the "x" axis, since all the elements that form "y" as a function are positive, no matter what values "x" takes. Providing " x>0 " of course.Moreover, for "y=0", then "cos^2(x^2)/ x^2 = 0 ", hence "x^2= pi/2". For "x>0" the only value that satisfies our equation is " x = sqrt(pi/2)",which means the graph should look like ( can not attach a picture :( ).

DG
Answered by Dorian G. MAT tutor

852 Views

See similar MAT University tutors

Related MAT University answers

All answers ▸

Why does sum(1/n) diverge but sum(1/n^2) converge?


Deduce a formula (in terms of n) for the following sum: sum (2^i * i) where 1<=i<=n, n,i: natural numbers ( one can write this sum as: 1*2^1+ 2*2^2+ .. +n*2^n)


[based on MAT 2018 (G)] The curves y = x^2 + c and y^2 = x touch at a single point. Find c.


I've been doing specimen MAT admission test - but I couldn't figure out the answer to the parts III, and IV of question 6 (https://www.maths.ox.ac.uk/system/files/attachments/speca.pdf). Is there some kind of a trick?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning