What graph can y = cos^2(x^2)/ x^2 have, for x > 0 ?

Right! Analysing the function "y" we can see that the graph should not exist below the "x" axis, since all the elements that form "y" as a function are positive, no matter what values "x" takes. Providing " x>0 " of course.Moreover, for "y=0", then "cos^2(x^2)/ x^2 = 0 ", hence "x^2= pi/2". For "x>0" the only value that satisfies our equation is " x = sqrt(pi/2)",which means the graph should look like ( can not attach a picture :( ).

DG
Answered by Dorian G. MAT tutor

790 Views

See similar MAT University tutors

Related MAT University answers

All answers ▸

How do you solve hard integration questions using information you know


[based on MAT 2018 (G)] The curves y = x^2 + c and y^2 = x touch at a single point. Find c.


The sequence xn is given by the formula x_n = n^3 − 9n^2 + 631. What is the largest value of n for which x_n > x_(n+1)?


Show that the inequality x^4 < 8x^2 + 9 is satisfied for when -3 < x < 3 .


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences