What graph can y = cos^2(x^2)/ x^2 have, for x > 0 ?

Right! Analysing the function "y" we can see that the graph should not exist below the "x" axis, since all the elements that form "y" as a function are positive, no matter what values "x" takes. Providing " x>0 " of course.Moreover, for "y=0", then "cos^2(x^2)/ x^2 = 0 ", hence "x^2= pi/2". For "x>0" the only value that satisfies our equation is " x = sqrt(pi/2)",which means the graph should look like ( can not attach a picture :( ).

DG
Answered by Dorian G. MAT tutor

923 Views

See similar MAT University tutors

Related MAT University answers

All answers ▸

Find the number of solutions x in [0,2pi) to the equation 7sin x +2(cos x)^2 =5.


If f(x) =x^2 - 5x + 7 what are the coordinates of the minimum of f(x-2)?


Let r and s be integers. Then ( 6^(r+s) x 12^(r-s) ) / ( 8^(r) x 9^(r+2s) ) is an integer when: (a) r+s <= 0, (b) s <= 0, (c) r <= 0, (d) r >= s.


Given a + b = 20, find the maximum value of ba^2.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning