If two cars are moving, labelled car A and car B. Car A moves at 15 m/s and B at 10 m/s but car B also accelerated at 2 m/s/s. If the two both travel for ten seconds, which car will travel further?

Well for this question we can use the SUVAT equations. We'll see what values we have and what we're looking for.

So firstly we have the initial speed, often denoted usign the letter u. I'm going to write Au to mean the speed of car A.

Au=15 m/s

Bu=10 m/s

Now we also have the accelration, denoted by a. Car A doesn't change speed so its accelration is zero. Car B acceraltes by 2 m/s/s, so for every second that passes its speed increases by 2 m/s.

Aa=0

Ba=2

We also have the time taken, denoted by t. Both cars move for ten seconds so.

At=10

Bt=10

We're trying to find how far each one goes, this is denoted with the letter s.

As=?

Bs=?

With what we have we should use the SUVAT equation: s=ut+1/2at.

This equation uses the inital speed and the acceleration to find out how far an object has moved. Lets work it out for car A.

As=15 * 10+1/2 * 0 *10

As=15 * 10 = 150 m

Now for car B.

Bs=10*10 + 1/2 * 2 * 10

Bs= 100 + 10

Bs=110 m

So car A moves 150 m and car B moves 110 m, so car A moves further. 

TW
Answered by Tom W. Physics tutor

6465 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Give an example of 3 different types of radiation stating their make up, penetration and ionising effect.


A 80kg man is hanging from two 1.5m ropes that lie at 60 degrees from the horizontal. What is the tension in each rope required to prevent the man from dropping?


In a particle accelerator, you accelerate an electron. Afterwards, you measure it's energy to be 350 keV. Tell my why you can't find the speed from this energy using your knowledge of classical mechanics.


In a circuit with a thermistor and bulb, what happens to the brightness of the bulb as the temperature increases?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences