Why does sum(1/n) diverge but sum(1/n^2) converge?

Sum(1/n) is shown to converge by bracketing the series correctly and then comparing it with a series we know diverges. Sum(1/n^2) can be shown to converge via the integral test (using y=1/x^2), where the integral will be bigger than the series.

Answered by MAT tutor

15362 Views

See similar MAT University tutors

Related MAT University answers

All answers ▸

Let f(x) = 2x^3 − kx^2 + 2x − k. For what values of the real number k does the graph y = f(x) have two distinct real stationary points? (MAT 2017 q1.A)


What is the square root of the imaginary number i?


How many distinct solutions does the following equation have? log(base x^2 +2) (4-5x^2 - 6x^3) = 2 a)None, b)1, c)2, d)4, e)Infinitely many


Deduce a formula (in terms of n) for the following sum: sum (2^i * i) where 1<=i<=n, n,i: natural numbers ( one can write this sum as: 1*2^1+ 2*2^2+ .. +n*2^n)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning