Why does sum(1/n) diverge but sum(1/n^2) converge?

Sum(1/n) is shown to converge by bracketing the series correctly and then comparing it with a series we know diverges. Sum(1/n^2) can be shown to converge via the integral test (using y=1/x^2), where the integral will be bigger than the series.

Answered by MAT tutor

14255 Views

See similar MAT University tutors

Related MAT University answers

All answers ▸

Show that the inequality x^4 < 8x^2 + 9 is satisfied for when -3 < x < 3 .


How do you solve hard integration questions using information you know


What graph can y = cos^2(x^2)/ x^2 have, for x > 0 ?


[based on MAT 2018 (G)] The curves y = x^2 + c and y^2 = x touch at a single point. Find c.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning