prove by induction that, f(n) = 2^(3n+1) + 3(5^(2n+1)) is divisible by 17 for all n>0.

With induction we start with the base case n = 1. So setting n=1 we find that f(1) = 391 which is equal to 17x23. So indeed the base case holds.We assume that for positive integers k, f(k) is divisible by 17. We now seek to show that f(k+1) is also divisible by 17 and we can use the assumption that f(k) is. In this question it would seem smart to start with an expression of f(k+1).f(k+1) = 23(k+1)+1 + 3(52(k+1)+1)We will now try to manipulate this expression using index laws. We see that,f(k+1) = 23k+4 + 3(52k+3) = 2323k+1 + 3(5252k+1) = 8x23k+1 + 3x25x52k+1 = 8f(k) + 17x3(52k+1)We have manipulated our expression to find that f(k+1) is divisible by 17 since we can assume f(k) is.So given any positive integer k we know that f(k+1) is divisible by 17. Since we showed in our base case that f(1) is divisible by 17 it follows that f(n) is divisible by 17 by induction for all positive integers n.

MB
Answered by Matt B. Further Mathematics tutor

10517 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Compute the derivative of arcsin(x).


If 0<x<1, find the following sum: S = 1+2*x + 3*x^2 + 4*x^3 + ...


A block of mass 50kg resting on a rough surface with a coefficient of friction equal to 1/3. Find the maximum angle at which the surface can be inclined to the horizontal without the block slipping. Give your answer to 3 significant figures


For a homogeneous second order differential equation, why does a complex conjugate pair solution (m+in and m-in) to the auxiliary equation result in the complementary function y(x)=e^(mx)(Acos(nx)+Bisin(nx)), where i represents √(-1).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning