The line y = 3x-4 intersects the curve y = x^2 - a, where a is an unknown constant number. Find all possible values of a.

For the line and the curve to intersect we need the for the following system of equations to have a solution. y = 3x AND y = x2 - aThe solution of the system of equations is found by solving x^2 - 3x - a = 0. (Interested in real numbers only)The solutions of a quadratic equation of the form ax^2 + bx + c = 0 can be obtained via the formula (-b +- sqrt(b^2 - 4ac) ) / (2a).The formula results in a valid (/real) value only when b^2 - 4ac >=0, which in our case is equivalent to 9 + 4a >= 0.As we are given that the two curve intersect, we must have 9 + 4a >= 0, and thus a can be any value greater or equal to -9/4.

HK
Answered by Hasnat K. Further Mathematics tutor

3701 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

The circle c has equation x^2+ y ^2=1 . The line l has gradient 3 and intercepts the y axis at the point (0, 1). c and l intersect at two points. Find the co-ordinates of these points.


write showing all working the following algebraic expression as a single fraction in its simplest form: 4-[(x+3)/ ((x^2 +5x +6)/(x-2))]


Given a^2 < 4 and a+2b = 8. Work out the range of possible values of b. Give your answer as an inequality.


How do you use derivatives to categorise stationary points?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning