The line y = 3x-4 intersects the curve y = x^2 - a, where a is an unknown constant number. Find all possible values of a.

For the line and the curve to intersect we need the for the following system of equations to have a solution. y = 3x AND y = x2 - aThe solution of the system of equations is found by solving x^2 - 3x - a = 0. (Interested in real numbers only)The solutions of a quadratic equation of the form ax^2 + bx + c = 0 can be obtained via the formula (-b +- sqrt(b^2 - 4ac) ) / (2a).The formula results in a valid (/real) value only when b^2 - 4ac >=0, which in our case is equivalent to 9 + 4a >= 0.As we are given that the two curve intersect, we must have 9 + 4a >= 0, and thus a can be any value greater or equal to -9/4.

HK
Answered by Hasnat K. Further Mathematics tutor

3887 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

Show that 2cos^2(x) = 2 - 2sin^2(x) and hence solve 2cos^2(x) + 3sin(x) = 3 for 0<x<180


Why is it that when 'transformation A' is followed by 'transformation B', that the combined transformation is BA and not AB?


Find the coordinates of the minimum/maximum of the curve: Y = 8X - 2X^2 - 9, and determine whether it is a maximum or a minimum.


Solve these simultaneous equations: 3xy = 1, and y = 12x + 3


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning