Rationalise and simplify (root(3) - 7)/(root(3) + 1) . Give your answer in the form a + b*root(3) where a, b are integers.

There are two ways of solving this problem, one which is the routine method that always works in these cases, and one which requires an interesting little trick.The standard method is to use the difference of two squares removing the root in the denominator, by multiplying top and bottom by root(3) - 1. Then with a bit of algebra and multiplying out brackets we arrive at our result.The nifty trick is to observe that the top part is the bottom - 8. This allows us to separate the fraction into two, neither of which has a root on the top. This makes things a lot simpler although it will still require the difference of two squares.

NK
Answered by Nikolai K. Further Mathematics tutor

6482 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

Work out the equation of the tangent to the curve y=x^2+5x-8 at the point (2,6)


A curve is defined by the equation y = (x + 3)(x – 4). Find the coordinates of the turning point of the curve.


What is differentiation used for?


The equation of the line L1 is y = 3x – 2 The equation of the line L2 is 3y – 9x + 5 = 0 Show that these two lines are parallel.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning