How do I differentiate tan(x) ?

To differentiate tan(x):

Note: Here, we use d/dx f(x) to mean "the derivative of f(x) with respect to x". 

1) rewrite tan(x) as sin(x)/cos(x)

2) Apply the quotient rule (or, alternatively, you could use the product rule using functions sin(x) and 1/cos(x)):

Using the quotient rule:

d/dx tan(x) = (cos(x)cos(x) - sin(x)(-sin(x))) / cos2(x)

d/dx tan(x) = (cos2(x) + sin2(x)) / cos2(x)

3) Recall/Note the following identity: cos2(x) + sin2(x) = 1

So, d/dx tan(x) = 1 / cos2(x)

4) Use the definition of sec(x):

So, d/dx tan(x) = sec2(x), as required 

 

JH
Answered by Joseph H. Further Mathematics tutor

131950 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Show that the set of real diagonal (n by n) matrices (with non-zero diagonal elements) represent a group under matrix multiplication


If 0<x<1, find the following sum: S = 1+2*x + 3*x^2 + 4*x^3 + ...


Find the modulus and argument of the complex number 1+2i


Prove De Moivre's by induction for the positive integers


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning