How would our Sun's luminosity change if we increased its temperature 3 times?

The luminosity of our Sun could be derived by the Stefan-Boltzmann, otherwise known as Luminosity law. It says the total energy produced by a unit surface per unit time area (power per unit area) is: (power per unit area)=(Stefan-Boltzmann constant)(Temperature)4 That means the luminosity of the Sun is L=(Surface area of the Sun)(Stefan-Boltzmann constant)*(Temperature)4. We are only changing the temperature by a factor 3. That means the luminosity will increase by a factor of 34, since the temperature is present in the formula above with its fourth power. Therefore, the luminosity would increase 81 times.

Answered by Denislav G. Physics tutor

1922 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A 0.20 kg mass is whirled round in a vertical circle on the end of a light string of length 0.90 m. At the top point of the circle the speed of the mass is 8.2 m/s. What is the tension in the string at this point?


How is a particle moving in circular motion accelerating but not varying speed?


The Σ0 baryon, composed of the quark combination uds, is produced through the strong interaction between a π+ meson and a neutron. π+ + n →Σ0 + X What is the quark composition of X?


What is an inertial frame of reference?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences