y = (x+4)(6x-7). By differentiating, find the x coordinate of the maximum of this equation.

y=(x+4)(6x-7)y=6x2+17x-28dy\dx = 12x + 17To find the x coordinate of the stationary points of y, let dy\dx=012x+17=0x=-17\12

AS
Answered by Anika S. Further Mathematics tutor

1535 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

Find the tangent to the equation y=x^2 -2x +4 when x=2


If y=(x^2)*(x-10), work out dy/dx


The line y = 3x-4 intersects the curve y = x^2 - a, where a is an unknown constant number. Find all possible values of a.


This is a question from a past paper: https://prnt.sc/r6jnxc


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences