y = (x+4)(6x-7). By differentiating, find the x coordinate of the maximum of this equation.

y=(x+4)(6x-7)y=6x2+17x-28dy\dx = 12x + 17To find the x coordinate of the stationary points of y, let dy\dx=012x+17=0x=-17\12

AS
Answered by Anika S. Further Mathematics tutor

1557 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

Consider the Matrix M (below). Find the determiannt of the matrix M by using; (a) cofactor expansion along the first row, (b) cofactor expansion along the second column


The circle c has equation x^2+ y ^2=1 . The line l has gradient 3 and intercepts the y axis at the point (0, 1). c and l intersect at two points. Find the co-ordinates of these points.


The equation 3x^2 – 5x + 4 = 0 has roots P and Q, find a quadratic equation with the roots (P + 1/2Q) and (Q + 1/2P)


Given f(x)= 8 − x^2, solve f(3x) = -28


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences