y = (x+4)(6x-7). By differentiating, find the x coordinate of the maximum of this equation.

y=(x+4)(6x-7)y=6x2+17x-28dy\dx = 12x + 17To find the x coordinate of the stationary points of y, let dy\dx=012x+17=0x=-17\12

AS
Answered by Anika S. Further Mathematics tutor

1757 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

The curve C is given by the equation x^4 + x^2y + y^2 = 13. Find the value of dy/dx at the point (-1,3). (A-level)


Make y the subject of the formula x = SQRT((y+1)/(y-2))


Find the stationary points of y=x^3 + 3x^2 - 9x - 4


Prove that sin(x)^2 - 5cos(x)^2 = 6sin(x)^2 - 5


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning