Point A lies on the curve y=3x^2+5x+2. The x-coordinate of A is 2. Find the equation of the tangent to the curve at the point A

First differentiate the function with respect to x, dy/dx=6x+5 this finds the gradient function now calculate the gradient at point A by inputing x=2 into the gradient function 6(2)+5=17. Now using y=mx+c where m is known gives y=17x+c now must solve for c, at x=2 y=24 by 3(2)^2+5(2)+2=24 now we can solve for c where 24=17(2)+c this gives c=-10 y=17x-10

DS
Answered by Dylan S. Further Mathematics tutor

3899 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

The equation of the line L1 is y = 3x – 2 The equation of the line L2 is 3y – 9x + 5 = 0 Show that these two lines are parallel.


Work out the gradient of the curve y=x^3(x-3) at the point (3,17)


Given a^2 < 4 and a+2b = 8. Work out the range of possible values of b. Give your answer as an inequality.


A straight line passes trough the points A(-4;7); B(6;-5); C(8;t). Use an algebraic method to work out the value of t.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences