Point A lies on the curve y=3x^2+5x+2. The x-coordinate of A is 2. Find the equation of the tangent to the curve at the point A

First differentiate the function with respect to x, dy/dx=6x+5 this finds the gradient function now calculate the gradient at point A by inputing x=2 into the gradient function 6(2)+5=17. Now using y=mx+c where m is known gives y=17x+c now must solve for c, at x=2 y=24 by 3(2)^2+5(2)+2=24 now we can solve for c where 24=17(2)+c this gives c=-10 y=17x-10

DS
Answered by Dylan S. Further Mathematics tutor

4324 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

Simplify fully the expression ( 7x^2 + 14x ) / ( 2x + 4 )


Expand (2x+3)^4


Given a^2 < 4 and a+2b = 8. Work out the range of possible values of b. Give your answer as an inequality.


What is the distance between two points with x-coordinates 4 and 8 on the straight line with the equation y=(3/4)x-2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning