A parabola with equation y^2=4ax for constant a is translated by the vector (2,3) to give the curve C. The curve C passes through the point (4,7), what is the value of a?

Invert the translation of (2,3) to get the parabola passing through the point (4,7)-(2,3)=(2,4). This is the same as saying that y=4 when x=2, substitute this into your equation y^2=4ax to get a=2.This will be seen easier with a picture of the parabola and the curve C.

GV
Answered by Gabriel V. Further Mathematics tutor

2486 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

The function f is defined for x > 0 by f (x) = x^1n x. Obtain an expression for f ′ (x).


I don't know what I am doing when I solve differential equations using the integrating factor and why does this give us the solutions it does?


a) Find the general solution to the differential equation: f(x)=y''-12y'-13y=8. b) Given that when x=0, y=0 and y'=1, find the particular solution to f(x).


Use de Moivre’s theorem to show that, (sin(x))^5 = A sin(5x) + Bsin(3x) + Csin(x), where A , B and C are constants to be found.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning