Can you explain rationalising surds?

Rationalising surds is the process of removing a square root from the bottom of a fraction. The way we do it is by using a little trick involving the difference of two squares.The difference of two squares is a way that we can factorise an expression of the form a2 - b2 as (a+b)(a-b).
So if we have an irrational number as the denominator of our fraction, we can apply this in reverse to remove the square root. It's easier to see it in action:
Say I have an irrational number such as 1/(1-(sqrt2)) - (sqrt2 is the square root of 2)
Then I can observe that the denominator is of the form a-b, where a = 1, b = sqrt 2.
Knowing this, I can use the difference of two squares in reverse by multiplying our irrational number by (a+b)/(a+b) (as this equals 1 so we aren't changing the value of the original irrational number).
The denominator then becomes a2 - b2 or -1 in this case, and our numerator becomes a+b, or 1 + sqrt 2.Our original number is now equal to -1 - sqrt 2. We have removed the denominator entirely, and in doing so made it much easier to work with.
1 / (1 - sqrt 2) = -1 - sqrt 2.
(It's much easier to explain with diagrams!)

HA
Answered by Harry A. Further Mathematics tutor

2530 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

The curve C has equation f(x) = 4(x^1.5) + 48/(x^0.5) - 8^0.5 for x > 0. (a) Find the exact coordinates of the stationary point of C. (b) Determine whether the stationary point is a maximum or minimum.


Express (7+ √5)/(3+√5) in the form a + b √5, where a and b are integers.


A circle has equation x^{2}-8x+y^{2}-6y=d. A line is tangent to this circle and passes through points A and B, (0,17) and (17,0) respectively. Find the radius of the circle.


If the equation of a curve is x^2 + 9x + 8 = y, then differentiate it.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences