Find the x and y coordinates of the minimum of the following equation: y = x^2 - 14x + 55.

We can see that the quadratic function will be U-shaped, as the quadratic term is with a positive sign. Therefore, the absolute extreme of the function will be a minimum. Step 1: Differentiate to find the slope of the function. dy/dx = 2x - 14Step 2: Find where the slope equals 0. This will be the x coordinate. 2x -14 = 0 2x = 14 x = 7Step 3: Substitute x into the original equation, to get the functions value at x. y = 7^2 - (14 x 7) +55 y = 49 - 98 + 55 y = 104 - 98 y = 6Step 4: We have our coordinates: (7,6)

FD
Answered by Ferenc Dániel Z. Further Mathematics tutor

2052 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

Given a^2 < 4 and a+2b = 8. Work out the range of possible values of b. Give your answer as an inequality.


The coefficient of the x^3 term in the expansion of (3x + a)^4 is 216. Find the value of a.


f(x) = 3x^3 – x^2 – 20x – 12 (a) Use the factor theorem to show that (3x + 2) is a factor of f(x). [2 marks] (b) Factorise f(x) fully. [3 marks]


Can you explain induction and go through an example?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning