Find the coordinates of the minimum/maximum of the curve: Y = 8X - 2X^2 - 9, and determine whether it is a maximum or a minimum.

First we need to find the derivative of the curve:dy/dx = 8 - 4X.We can then find the X coordinate by setting this equal to zero: 0 = 8 - 4X, X = 2.Plugging this back into the original equation gives us the Y coordinate: Y = 8(2) - 2(2)2 - 9 = -1, Y = -1.Therefore the coordinates of the point are (2, -1)We know that this point must be a maximum as the coefficient of X2 is negative and therefore the curve is n shaped.

ML
Answered by Michael L. Further Mathematics tutor

2031 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

f(x) = 2x^3+6x^2-18x+1. For which values of x is f(x) an increasing function?


In a chess club there are x boys and y girls. If ten more boys join and one more girl joins, there is an equal amount of boys and girls. Knowing that y = 2x+2, Calculate x and y. [4 marks]


In the expansion of (x-7)(3x**2+kx-3) the coefficient of x**2 is 0. i) Find the value of k ii) Find the coefficient of x. iii) write the fully expanded equation in terms of x


Prove that tan^2(x)=1/(cos^2(x))-1


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences