Find the coordinates of the minimum/maximum of the curve: Y = 8X - 2X^2 - 9, and determine whether it is a maximum or a minimum.

First we need to find the derivative of the curve:dy/dx = 8 - 4X.We can then find the X coordinate by setting this equal to zero: 0 = 8 - 4X, X = 2.Plugging this back into the original equation gives us the Y coordinate: Y = 8(2) - 2(2)2 - 9 = -1, Y = -1.Therefore the coordinates of the point are (2, -1)We know that this point must be a maximum as the coefficient of X2 is negative and therefore the curve is n shaped.

ML
Answered by Michael L. Further Mathematics tutor

2275 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

f(x) = 3x^3 – x^2 – 20x – 12 (a) Use the factor theorem to show that (3x + 2) is a factor of f(x). [2 marks] (b) Factorise f(x) fully. [3 marks]


A curve is defined by the equation y = (x + 3)(x – 4). Find the coordinates of the turning point of the curve.


Simplify fully the expression ( 7x^2 + 14x ) / ( 2x + 4 )


Express (7+ √5)/(3+√5) in the form a + b √5, where a and b are integers.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning