Find the coordinates of the minimum/maximum of the curve: Y = 8X - 2X^2 - 9, and determine whether it is a maximum or a minimum.

First we need to find the derivative of the curve:dy/dx = 8 - 4X.We can then find the X coordinate by setting this equal to zero: 0 = 8 - 4X, X = 2.Plugging this back into the original equation gives us the Y coordinate: Y = 8(2) - 2(2)2 - 9 = -1, Y = -1.Therefore the coordinates of the point are (2, -1)We know that this point must be a maximum as the coefficient of X2 is negative and therefore the curve is n shaped.

ML
Answered by Michael L. Further Mathematics tutor

2077 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

To differentiate a simple equation: y= 4x^3 + 7x


This is a question from a past paper: https://prnt.sc/r6jnxc


Find the coordinates of any stationary points of the curve y(x)=x^3-3x^2+3x+2


A curve is defined by the equation y = (x + 3)(x – 4). Find the coordinates of the turning point of the curve.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences