A cart starts at rest and moves freely down a ramp without friction or air resistance and descends 8 meters vertically, what is its speed at the bottom?

We apply energy conservation. At the start the cart has only gravitational potential energy given by mgh where m is its mass, g is the gravitational field, h = 8m is the height. At the end the cart has only kinetic energy mv^2/2 where v is its speed. By conservation of energy mgh = mv^2/2, so v^2=2gh= 29.88 m^2 s^-2=156.8 m^2 s^-2 so taking the square root, v = 12.5 m s^-1.

JT
Answered by Joshua T. Physics tutor

1339 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

The friction coefficient of Formula 1 car tyres are around 1.7 in dry weather. Assuming sufficient power from the engine, calculate the theoretical best 0-100 km/h acceleration time in seconds. (neglect downforce, g=9.81m/s^2)


Show that the orbital period of a satellite is given by T^2=(4pi^2r^3)/(GM) where r is the orbital radius, G is the gravitational constant and M is the mass of the Earth. Then find the orbital radius of a geostationary satellite.


How would our Sun's luminosity change if we increased its temperature 3 times?


What is the derivative of distance with respect to time.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning