A circle has equation x^{2}-8x+y^{2}-6y=d. A line is tangent to this circle and passes through points A and B, (0,17) and (17,0) respectively. Find the radius of the circle.

Gradient of line: (0-17)/(17-0)= -1 equation of line: y-y1=m(x-x1) y-17=-1(x-0) y=17-x equation of circle: (x-4)2+(y-3)2-25=d (completing the square) (x-4)2+(y-3)2=d+25 Substitute equation of line into equation of circle:(x-4)2+(17-x-3)2=d+25, 2x2-36x+(187-d)=0 As the line is tangential to the circle, we want there to be one solution of x to this quadratic, and hence need discriminant to equal 0, (-36)2-(4)(2)(187-d)=0 8d=200 d=25=> (x-4)2+(y-3)2=50 and equation of circle is of form (x-a)2+(y-b)2=r2Thus, r2= 50 and radius of circle is square root 50

AH
Answered by Amirali H. Further Mathematics tutor

2527 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

A curve has equation y = x^2 - 7x. P is a point on the curve, and the tangent to the curve at P has gradient 1. Work out the coordinates of P.


A curve has equation: y = x^3 - 3x^2 + 5. Show that the curve has a minimum point when x = 2.


Simplify fully the expression ( 7x^2 + 14x ) / ( 2x + 4 )


How would I solve the following equation d^2x/dt^2 + 5dx/dt + 6x = 0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning