Express the complex number (1+i)/(1-i) in the form x+iy

First of all calculate the complex conjugate of the denominator. The complex conjugate of (1-i) is 1+i.Now multiply the given complex number by (1+i)/(1+i), note that we are not modifying the starting number since we are just multiplying by 1. The product is (1+i)^2/(1-(i)^2), that is (1+i)^2/2. Finally just calculate (1+i)^2=1+2i+(i^2)=2i, thus (1+i)/(1-i)=2i/2=i=0+1*i.

CM
Answered by Claudio M. Further Mathematics tutor

7852 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Find the complementary function to the second order differential equation d^2y/dx^2 - 5dy/dx + 6x = x^2


A parabola with equation y^2=4ax for constant a is translated by the vector (2,3) to give the curve C. The curve C passes through the point (4,7), what is the value of a?


What are imaginary numbers, and why do we bother thinking about them if they don't exist?


How far is the point (7,4,1) from the line that passes through the points (6,4,1) and (6,3,-1)?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning