Show that the matrix A is non-singular for all real values of a

Given: A = [a -5; 2 a+4]. 1) First find the determinant of A using the known formula => det A = a2+ 4a + 10. A singular matrix is one in which it's determinant equals zero (the determinant of a matrix is a number that captures information about the characteristics of the matrix). The roots of the quadratic are complex, so the graph never equals zero/ no real roots. Therefore it must be a non-singular matrix.

Answered by Further Mathematics tutor

7056 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Find the modulus and argument of the complex number 1+2i


If 0<x<1, find the following sum: S = 1+2*x + 3*x^2 + 4*x^3 + ...


I don't know what I am doing when I solve differential equations using the integrating factor and why does this give us the solutions it does?


Prove by induction that 1^2 + 2^2 + 3^2 + . . . + n^2 = (1/6)n(n+1)(2n+1)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences