Evaluate the following product of two complex numbers: (3+4i)*(2-5i)

Answer : 26-7iMethod : Expanding the brackets will result in the sum, 6 -15i + 8i - 20i2by assessing this you can see that you can evaluate -15i + 8i to be equal to -7i which is the imaginary part of the complex number, one bit of the real part comes from the product of the real parts of each of the complex numbers (2*3 = 6) but from the properties of the imaginary constant i, the remainder of the real part comes from the i2 term which of course evaluates to -1. Hence -20i2 is equal to 20 and the real part is then equal to 26. Therefore, the product is equal to 26-7i.

CB
Answered by Christopher B. Further Mathematics tutor

2257 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Given a curve with parametric equations, x=acos^3(t) and y=asin^3(t), find the length of the curve between points A and B, where t=0 and t=2pi respectively.


Show that G = {1, -1} is a group under multiplication.


Find the general solution of the differential equation d^2y/dx^2 - 5*dy/dx + 4y = 2x


What is the general solution to the equation d2y/dx2 + dy/dx - 2y = -3sinx + cosx (d2y/dx2 signals a second order derivative)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning