Two identical uniform spheres each of radius R are placed in contact. The gravitational force between them is F. They are then separated until the force between them is one ninth of the magnitude. What is the distance between the surfaces of the spheres?

With electostatics, it is important to remember that inthe equation giving the force between two point charges, the force is inversely proportional to the square of the distance of the charges. 

It is important to note that with spheres, we will effectively treat them with point charge and hence the distances we will take for our equation is from the centre. 

When placed next to each other, the distance between the centres is 2R. Hence if the force decreases by a factor of 9, the distance between the spheres must increase by a factor of 3 (root 9 is 3). Hence the new distance between the spheres is 6R.

However, the question asks for the distance between the surfaces. Hence 2R must be subtracted from our answer, leaving us with the correct answer, 4R. 

MS
Answered by Mrinank S. Physics tutor

23163 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A DVD is dropped from rest. The DVD does not reach terminal velocity before it hits the ground. Explain how the acceleration of the DVD varies from the instant it is dropped until just before it hits the ground.


A gold leaf electroscope with a zinc plate top is charged by briefly connecting it to the negative electrode of a high-voltage supply. Explain how the gold leaf will appear and how the leaf can be caused to drop again.


Two immobile point charges Q1 and Q2 of values +q and +3q respectively are some distance apart. Q3, with value +2q is placed between them and does not move. What is the ratio of the distance between Q3 and Q2 to the distance between Q1 and Q3?


Calculate the threshold frequency for a metal with a work function of 3eV


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning