What is the distance between two points with x-coordinates 4 and 8 on the straight line with the equation y=(3/4)x-2

Firstly, to be able to find the distance between the two points we must find the y-coordinates of each point by substituting in the x values. For x=4y=3/4x4-2=1For x=8y=3/4x8-2=4Now that we know the coordinates of the points, we can find the distance between them. If we imagine a line drawn 4 units across from the first point (4,1) and then up 3 units form there to the second point (8,4) we can see the problem as a right-angled triangle with sides of distance 3 and 4. For the triangle we can use Pythagoras' theorem of a^2+b^2=c^2 to find the distance between the two points, c. If we rearrange the equation to make c the subject we get c=(a^2+b^2)^(1/2)Therefore, c=(3^2+4^2)^(1/2)c=(9+16)^(1/2)c=25^(1/2)c=5So the distance between the 2 points is 5 units

LD
Answered by Lee D. Further Mathematics tutor

1750 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

f'(x) = 3x^2 - 5cos(3x) + 90. Find f(x) and f''(x).


Lengths of two sides of the triangle and the angle between them are known. Find the length of the third side and the area of the triangle.


Find any stationary points in the function f(x) = 3x^2 + 2x


Find the coordinates of the minimum point of the function y=(x-5)(2x-2)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences