Two electrons are a distance r apart, the first electron exerts a force F on the second electron. a) What force does the second electron exert on the first? b) In terms of r, at what distance is the force that the first electron exerts on the second F/9?

This question is on electric forces between charged particles. A useful equation to consider is Coulomb's law:F=k(Q1Q2)/R2Where k is the Coulomb's law constant:k~9.0x109Nm2/C2Q is the charge on each particle in Coulombs, R is the distance in metres and F is the force in Newtons.a) This part is a simple application of Newton's third law, as the first electron is exerting a repulsive force F on the second, the second must also be exerting a repulsive force F on the first. (Every force has an equal and opposite reaction force!)b) This section requires you to look at Coulomb's law. It is what is known as an inverse square law, this effectively means the force decreases proportionally to the square of the distance, so for the force to have decreased by a factor of 9, the distance must have increased by a factor of the square root of nine, this equals 3, so the new distance is 3r. Nothing else in the equation changes, so they all other terms can be treated as constants and ignored.This can be seen more explicitly by mathematically manipulating Coulomb's law, however I find it easier and more useful to instead find the answer by just thinking about the underlying link between force and distance in this equation, this means you develop a proper understanding of the inverse square relationship.

RW
Answered by Ross W. Physics tutor

6365 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Convection, conduction and radiation in space


A stationary particle explodes into 3: A (to the left), B and C (both to the right). B has mass m and speed 3v. C has mass 2m and speed v. A has speed 2v. What is the mass of A in terms of m?


Draw and describe the major points of a typical stress-strain graph for a metal.


explain how a cyclotron produces a high energy electron


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning