write the sum cos(x)+cos(2x)+...+cos(nx) as a quotient only involving sine and cosine functions

We can write this sum S as Re(e^ix+e^2ix+...+e^nix), we now have a finite geometric series, which we know the formula for.Have, S = Re( e^ix(1-e^inx)/(1-e^ix)) - Now factoring numerator and denominator to look like complex formula for sine function we get,S = Re( e^ixe^inx/2(e^-inx/2-e^inx/2)/(e^ix/2(e^-ix/2-e^ix/2))) = Re(e^i(n/2+1/2)xsin(nx/2)/sin(x/2))Now since n is an integer and x is an element of the reals taking the real part gives,S = sin(nx/2)cos(((n+1)/2)x)/sin(x/2)

Answered by Further Mathematics tutor

4735 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

The set of midpoints of the parallel chords of an ellipse with gradient, constant 'm', lie on a straight line: find its equation; equation of ellipse: x^2 + 4y^2 = 4


Prove that sum(k) from 0 to n is n(n+1)/2, by induction


How do you deal with 3 simultaneous equations? (Struggling with Q7 of AQA specimen paper 1)


Prove that ∑(1/(r^2 -1)) from r=2 to r=n is equal to (3n^2-n-2)/(4n(n+1)) for all natural numbers n>=2.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning