write the sum cos(x)+cos(2x)+...+cos(nx) as a quotient only involving sine and cosine functions

We can write this sum S as Re(e^ix+e^2ix+...+e^nix), we now have a finite geometric series, which we know the formula for.Have, S = Re( e^ix(1-e^inx)/(1-e^ix)) - Now factoring numerator and denominator to look like complex formula for sine function we get,S = Re( e^ixe^inx/2(e^-inx/2-e^inx/2)/(e^ix/2(e^-ix/2-e^ix/2))) = Re(e^i(n/2+1/2)xsin(nx/2)/sin(x/2))Now since n is an integer and x is an element of the reals taking the real part gives,S = sin(nx/2)cos(((n+1)/2)x)/sin(x/2)

Answered by Further Mathematics tutor

4881 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

You have three keys in your pocket which you extract in a random way to unlock a lock. Assume that exactly one key opens the door when you pick it out of your pocket. Find the expectation value of the number of times you need to pick out a key to unlock.


Find the values of x where x+3>2/(x-4), what about x+3>2/mod(x-4)?


How do I find the asymptotes of a curve?


Prove by induction that, for all integers n >=1 , ∑(from r=1 to n) r(2r−1)(3r−1)=(n/6)(n+1)(9n^2 -n−2). Assume that 9(k+1)^2 -(k+1)-2=9k^2 +17k+6


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning