write the sum cos(x)+cos(2x)+...+cos(nx) as a quotient only involving sine and cosine functions

We can write this sum S as Re(e^ix+e^2ix+...+e^nix), we now have a finite geometric series, which we know the formula for.Have, S = Re( e^ix(1-e^inx)/(1-e^ix)) - Now factoring numerator and denominator to look like complex formula for sine function we get,S = Re( e^ixe^inx/2(e^-inx/2-e^inx/2)/(e^ix/2(e^-ix/2-e^ix/2))) = Re(e^i(n/2+1/2)xsin(nx/2)/sin(x/2))Now since n is an integer and x is an element of the reals taking the real part gives,S = sin(nx/2)cos(((n+1)/2)x)/sin(x/2)

Answered by Further Mathematics tutor

4650 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

(FP1) Given k = q + 3i and z = w^2 - 8w* - 18q^2 i, and if w is purely imaginary, show that there is only one possible non-zero value of z


Express cos5x in terms of increasing powers of cosx


Prove by mathematical induction that 2^(2n-1) + 3^(2n-1) is divisible by 5 for all natural numbers n.


Let f(x)=x^x for x>0, then find f'(x) for all x>0.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning