Given the equation x^3-12x^2+ax-48=0 has roots p, 2p and 3p, find p and a.

QUESTION: Given the equation x3-12x2+ax-48 = 0 has roots p, 2p and 3p, find p and a. Roots mean x = p, x = 2p and x = 3p hence (x-p), (x-2p) and (x-3p) are factors of the equation. Expanding these three factors together will equal the equation. (x-p)(x-2p)(x-3p) = (x2-px-2px+2p2)(x-3p) = (x3-px2-2px2+2p2x-3px2+3p2x+6p2x-6p3) = 0. By collecting and equating coefficients both p and a can be found. x3+(-p-2p-3p)x2+(2p2+3p2+6p2)x-6p3 = x3-6px2+11p2x-6p3 -6p3 = -48 hence p3 = 8 and so p = 2 11p2 = a and so a = 44 ANSWER: p = 2 and a = 44

MD
Answered by Macaulay D. Further Mathematics tutor

2741 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Evaluate (1 + i)^12


For a homogeneous second order differential equation, why does a complex conjugate pair solution (m+in and m-in) to the auxiliary equation result in the complementary function y(x)=e^(mx)(Acos(nx)+Bisin(nx)), where i represents √(-1).


Use algebra to find the set of values of x for which mod(3x^2 - 19x + 20) < 2x + 2.


How do I find and plot the roots of a polynomial with complex roots on an Argand diagram? e.g. f(z) =z^3 -3z^2 + z + 5 where one of the roots is known to be 2+i


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences