A 0.20 kg mass is whirled round in a vertical circle on the end of a light string of length 0.90 m. At the top point of the circle the speed of the mass is 8.2 m/s. What is the tension in the string at this point?

A diagram would be very beneficial for this problem. We can draw a free body force diagram of the mass. At the top of the circle the two forces acting on it are its weight and tension from the string. Both are acting vertically downwards.
This problem is an example of circular motion, so the equation to use will be:
F = (mv2) / r
where F is the centripetal force (acting towards the centre of the circle), m is mass, v is velocity and r is radius
Therefore we can calculate what the centripetal force will be:
F = (0.2
8.22) / 0.9
F = 14.94222...N
As we said earlier, there are two forces acting on the mass towards the centre of the circle: its weight and the tension. We can calculate the weight from the body's mass using W = mg
W = 0.2
9.81
Then F = weight + tension
tension = F - weight
tension = 14.942 - 0.2*9.81
tension = 13.0N

TC
Answered by Thomas C. Physics tutor

49125 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A nucleus of the stable isotope Pb(208,82) has more neutrons than protons. Explain why there is this imbalance between proton and neutron numbers by referring to the forces that operate within the nucleus.


Explain quantitatively how an object can follow circular motion whilst on a ramp with no friction in the radial direction.


Two identical uniform spheres each of radius R are placed in contact. The gravitational force between them is F. They are then separated until the force between them is one ninth of the magnitude. What is the distance between the surfaces of the spheres?


Explain the forces involved in a pendulum set up.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences