A 0.20 kg mass is whirled round in a vertical circle on the end of a light string of length 0.90 m. At the top point of the circle the speed of the mass is 8.2 m/s. What is the tension in the string at this point?

A diagram would be very beneficial for this problem. We can draw a free body force diagram of the mass. At the top of the circle the two forces acting on it are its weight and tension from the string. Both are acting vertically downwards.
This problem is an example of circular motion, so the equation to use will be:
F = (mv2) / r
where F is the centripetal force (acting towards the centre of the circle), m is mass, v is velocity and r is radius
Therefore we can calculate what the centripetal force will be:
F = (0.2
8.22) / 0.9
F = 14.94222...N
As we said earlier, there are two forces acting on the mass towards the centre of the circle: its weight and the tension. We can calculate the weight from the body's mass using W = mg
W = 0.2
9.81
Then F = weight + tension
tension = F - weight
tension = 14.942 - 0.2*9.81
tension = 13.0N

TC
Answered by Thomas C. Physics tutor

48767 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

How am I going to remember all of the particles I need to know? (A-level Physics)


A car is moving along a straight horizontal road, with a constant acceleration. The car passes point A, with a speed of ums(-1). 10 seconds later, passes point B, with a speed of 45 ms(-1). The distance from A to B is 300m. Find u.


Two cars start at point A. Car 1 moves in a direction at 5 m/s. After 10 seconds car 2 accelerates in the same direction as car 1 at 2m/s^2. At what time after car 1 starts moving and distance from A does car 2 pass car 1?


Derive an expression for the centripetal acceleration of a body in uniform circular motion.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences