A 0.20 kg mass is whirled round in a vertical circle on the end of a light string of length 0.90 m. At the top point of the circle the speed of the mass is 8.2 m/s. What is the tension in the string at this point?

A diagram would be very beneficial for this problem. We can draw a free body force diagram of the mass. At the top of the circle the two forces acting on it are its weight and tension from the string. Both are acting vertically downwards.
This problem is an example of circular motion, so the equation to use will be:
F = (mv2) / r
where F is the centripetal force (acting towards the centre of the circle), m is mass, v is velocity and r is radius
Therefore we can calculate what the centripetal force will be:
F = (0.2
8.22) / 0.9
F = 14.94222...N
As we said earlier, there are two forces acting on the mass towards the centre of the circle: its weight and the tension. We can calculate the weight from the body's mass using W = mg
W = 0.2
9.81
Then F = weight + tension
tension = F - weight
tension = 14.942 - 0.2*9.81
tension = 13.0N

TC
Answered by Thomas C. Physics tutor

50054 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Experimentally, how would you calculate the Young's modulus of a material?


If a vehicle A, 1000kg moving at 5m/s collides with vehicle B, 750kg, moving in the opposite direction at 8m/s assuming no rebound what is the velocity of the vehicles after collision.


An alpha particle is accelerated with 5MeV of kinetic energy towards the nucleus of a gold atom with atomic number 79. What is the distance of closest approach that is reached by the alpha particle?


Determine a vector expression for the position of a particle whose velocity is (3t^2 - 8)i + 5j m/s.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning