This is a question on the photoelectric effect: For potassium, the work function is 3.65E-19J. Find the maximum wavelength of light that will cause photoelectrons to be emitted when shone onto potassium.

We know thatphoton energy = minimum energy needed to free an electron + max kinetic energy of emitted photoelectronAs we have been asked for the maximum wavelength , we know these photoelectrons just have enough energy to leave the surface of the potassium, but they will not have any kinetic energy. Therefore:photon energy = min energy needed to free electron (work function) E = hf = work function as v = f * wavelengthwork function = (hv)/wavelength, therefore rearranging we get wavelength = (hv) / work function wavelength = (6.63x10-34 x 3.00x108)/(3.65x10-19)= 5.4493x10-7m = 5.45x10-7m (to 3s.f)

KB
Answered by kathryn b. Physics tutor

2730 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A ball is thrown downwards from a height of 10m with speed of 5m/s, assuming g=10m/s^2, calculate the final velocity of the ball when it hits the ground


Why does a small puddle of water evaporate at room temperature, even though the temperature is way below the boiling point of water?


What is the 'centre of gravity' of an object and how do I calculate it?


A boy (25kg) and a girl (20kg) are playing on a see-saw which is 4m long. If the boy sits 1m from the centre on the left side and the girl 2m from the centre on the other, which direction will the see-saw will rotate around its centre?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning