This is a question on the photoelectric effect: For potassium, the work function is 3.65E-19J. Find the maximum wavelength of light that will cause photoelectrons to be emitted when shone onto potassium.

We know thatphoton energy = minimum energy needed to free an electron + max kinetic energy of emitted photoelectronAs we have been asked for the maximum wavelength , we know these photoelectrons just have enough energy to leave the surface of the potassium, but they will not have any kinetic energy. Therefore:photon energy = min energy needed to free electron (work function) E = hf = work function as v = f * wavelengthwork function = (hv)/wavelength, therefore rearranging we get wavelength = (hv) / work function wavelength = (6.63x10-34 x 3.00x108)/(3.65x10-19)= 5.4493x10-7m = 5.45x10-7m (to 3s.f)

KB
Answered by kathryn b. Physics tutor

2606 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Why does the Photoelectric Effect lead to the conclusion that classical physics cannot be all of physics?


If an alpha particle (Z = 2) of kinetic energy 7 MeV is incident on a gold nucleus (Z = 79), what is its closest distance of approach?


If f(x)= ln(x^2)-4, give f^-1(x)


A supertanker of mass 4.0 × 10^8 kg, cruising at an initial speed of 4.5 m s^(–1), takes one hour to come to rest. Assume the force slowing down the tanker is constant.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning