This is a question on the photoelectric effect: For potassium, the work function is 3.65E-19J. Find the maximum wavelength of light that will cause photoelectrons to be emitted when shone onto potassium.

We know thatphoton energy = minimum energy needed to free an electron + max kinetic energy of emitted photoelectronAs we have been asked for the maximum wavelength , we know these photoelectrons just have enough energy to leave the surface of the potassium, but they will not have any kinetic energy. Therefore:photon energy = min energy needed to free electron (work function) E = hf = work function as v = f * wavelengthwork function = (hv)/wavelength, therefore rearranging we get wavelength = (hv) / work function wavelength = (6.63x10-34 x 3.00x108)/(3.65x10-19)= 5.4493x10-7m = 5.45x10-7m (to 3s.f)

KB
Answered by kathryn b. Physics tutor

2886 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

What is viscosity?


Show that gravitational force within a nuclei is negilible compared with the electric repulsion.


Hydrogen has a single proton and a single electron. Find the electric potential at a distance of 0.50 * 10^(-10) (m) from the proton.


Is Pluto a planet?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning