Work out the gradient of the curve y=x^3(x-3) at the point (3,17)

First simplify the equation of the curve y= x^4 - 3x^3 .The gradient is the differential.To differentiate, bring down the power and take one from it.x^4 becomes 4x^3-3x^3 becomes (-3x3)= -9x^2dy/dx= 4x^3 - 9x^2Coordinates are written in (x,y) form. Hence x=3.Gradient at x=3 = 4x^3 - 9x^2 = 4(3^3) - 9(3^2) = 108 - 81 = 27

SM
Answered by Sophie M. Further Mathematics tutor

3811 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

Make y the subject of the formula x = SQRT((y+1)/(y-2))


f(x) = 3x^3 – x^2 – 20x – 12 (a) Use the factor theorem to show that (3x + 2) is a factor of f(x). [2 marks] (b) Factorise f(x) fully. [3 marks]


A ladder of length 2L and mass m is placed leaning against a wall, making an angle t with the floor. The coefficient of friction between all surfaces is c. At what angle t does the ladder begin to slip?


How can you divide an algebraic expression by another algebraic expression?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning