Find the square roots of 2 + isqrt(5)

Since we’re finding the square roots of 2 + isqrt(5) then (x+iy)^2 = 2 + isqrt(5)Thereforex^2 + 2ixy - y^2 = 2 + isqrt(5)Take real and imaginary parts it followsx^2 - y^2 = 2 and 2ixy = isqrt(5)solving this simultaneous equation for x and yx = +- sqrt(10)/2 and y = +- sqrt(2)/2So, answering the question, the square roots of 2 + isqrt(5) are+- sqrt(10)/2 +- isqrt(2)/2

SL
Answered by Samuel L. Further Mathematics tutor

2837 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Given y=arctan(3e^2x). Show dy/dx= 3/(5cosh(2x) + 4sinh(2x))


Find the four complex roots of the equation z^4 = 8(3^0.5+i) in the form z = re^(i*theta)


How to calculate the integral of sec(x)?


How do you find the matrix corresponding to a transformation?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences