Find the square roots of 2 + isqrt(5)

Since we’re finding the square roots of 2 + isqrt(5) then (x+iy)^2 = 2 + isqrt(5)Thereforex^2 + 2ixy - y^2 = 2 + isqrt(5)Take real and imaginary parts it followsx^2 - y^2 = 2 and 2ixy = isqrt(5)solving this simultaneous equation for x and yx = +- sqrt(10)/2 and y = +- sqrt(2)/2So, answering the question, the square roots of 2 + isqrt(5) are+- sqrt(10)/2 +- isqrt(2)/2

SL
Answered by Samuel L. Further Mathematics tutor

3367 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Let A, B and C be nxn matrices such that A=BC-CB. Show that the trace of A (denoted Tr(A)) is 0, where the trace of an nxn matrix is defined as the sum of the entries along the leading diagonal.


Given a curve with parametric equations, x=acos^3(t) and y=asin^3(t), find the length of the curve between points A and B, where t=0 and t=2pi respectively.


Solve this equation: x^2 + 2x + 2


Give the general solution to (d2y/dx2) - 2dy/dx -3y = 2sinx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning