Find the square roots of 2 + isqrt(5)

Since we’re finding the square roots of 2 + isqrt(5) then (x+iy)^2 = 2 + isqrt(5)Thereforex^2 + 2ixy - y^2 = 2 + isqrt(5)Take real and imaginary parts it followsx^2 - y^2 = 2 and 2ixy = isqrt(5)solving this simultaneous equation for x and yx = +- sqrt(10)/2 and y = +- sqrt(2)/2So, answering the question, the square roots of 2 + isqrt(5) are+- sqrt(10)/2 +- isqrt(2)/2

SL
Answered by Samuel L. Further Mathematics tutor

2772 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

I do not understand this topic and particularly this example. In the class the result was found out but I still do not get it. How did the teacher came up with this outcome?


How do I find the inverse of a 3x3 matrix?


Find the volume of revolution about the x-axis of the curve y=1/sqrt(x^2+2x+2) for 0<x<1


Express the complex number (1+i)/(1-i) in the form x+iy


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences