Given the rate of thermal energy transfer is 2.7kW, the volume of the water tank is 4.5m^3, the water is at a temperature of 28oC, density of water is 1000kgm-3 & c=4200Jkg-1K-1. Calculate the rise in water temperature that the heater could produce in 1hr

The equations needed to solve this problem are outlined below. E = mc(T2 - T1) d = m/v P = E/tYou first need to work out the mass of the water. m = 1000 x 4.5 = 4500kg You then need to work out the amount of energy produced by the heater in one hour. 2700 = E / (60 x 60)E = 9.72 x 106JThe change in temperature of the water can then be calculated.9.72 x 106 = 4500 x 4200 x (T2 - T1)Change in T = 0.51K

JB
Answered by Jasmine B. Physics tutor

2579 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

If photons of wavelength 0.1nm are incident on a 2m x 2m Solar Panel at a rate of 2.51x10^15s^-1, calculate the intensity, I, of the photons on the Solar Panel.


A car of mass M and a maximum power output of P is on an rough inclined plane Θ to the horizontal. What is the maximum velocity (v). Coefficient of friction=μ and air resistance=kv where k is constant


Why does a single slit diffraction pattern occur?


State Ohm's Law and the main characteristics of ohmic conductors, giving examples


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning