How do I derive Kepler's 3rd law using Newton's Law of gravitation, in the case of a circular orbit?

Kepler's 3rd law states that the cube of the radius, r from a planet is directly proportional to the square of the orbital period around it, T: r3 ∝ T2 (this is the result we want!)
We know Newton's Law of gravitiation: Fg = GMm/r2 We also know the equations of circular motion, and that Fc = mv2/r The key is that in a circular orbit, the centripetal force Fc is provided by the gravitational force FgSo we can equate Fc = Fg=> mv2/r = GMm/r2 We can see m cancels on both sides:v2/r = GM/r2 Remember in circular motion v depends on r and T:v = ω r and ω = 2π/T so v = 2πr/Tsubstituting v = 2πr/T back into equation 1:4π2r/T2 = GM/r2Note how m cancels out and v is substituted with r and T terms: so the mass/velocity of the satellite don't matter, and the result is general for ANY orbiting body!Rearrange so the constants are on one side, and r and T terms on the other:r3/T2 = GM/4π2or, r3 = k T2 where the constant k = GM/4π2
=> r3 ∝ T2 for any planet ...Kepler's 3rd law!

GC
Answered by Greta C. Physics tutor

5482 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Bismuth-208, which has an atomic mass of 208u and 83 protons in the nucleus, decays through the emission of 2 alpha particles and a beta-positive particle. What isotope results from this decay?


Calculate the threshold wavelength for a metal surface with work function of 6.2 eV.


A car is travelling at 20 m/s. The accelerator is applied, causing an acceleration of 2m/s^s. How fast is the car travelling after 10 seconds of acceleration?


Explain what is meant by specific latent heat of fusion


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences