How do I derive Kepler's 3rd law using Newton's Law of gravitation, in the case of a circular orbit?

Kepler's 3rd law states that the cube of the radius, r from a planet is directly proportional to the square of the orbital period around it, T: r3 ∝ T2 (this is the result we want!)
We know Newton's Law of gravitiation: Fg = GMm/r2 We also know the equations of circular motion, and that Fc = mv2/r The key is that in a circular orbit, the centripetal force Fc is provided by the gravitational force FgSo we can equate Fc = Fg=> mv2/r = GMm/r2 We can see m cancels on both sides:v2/r = GM/r2 Remember in circular motion v depends on r and T:v = ω r and ω = 2π/T so v = 2πr/Tsubstituting v = 2πr/T back into equation 1:4π2r/T2 = GM/r2Note how m cancels out and v is substituted with r and T terms: so the mass/velocity of the satellite don't matter, and the result is general for ANY orbiting body!Rearrange so the constants are on one side, and r and T terms on the other:r3/T2 = GM/4π2or, r3 = k T2 where the constant k = GM/4π2
=> r3 ∝ T2 for any planet ...Kepler's 3rd law!

Answered by Greta C. Physics tutor

3404 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

How does the angle of an inclined plane relate to its efficiency, given the coefficient of friction between a body and the plane?


A sample of pure gold has a density of 19300 kgm^-3. If the density of a gold nucleus is 1.47x10^17Kgm^-3, discuss what this implies about the structure of the gold atom. [4 marks]


In a particle accelerator, you accelerate an electron. Afterwards, you measure it's energy to be 350 keV. Tell my why you can't find the speed from this energy using your knowledge of classical mechanics.


What is the change in temperature of 2kg of water heated by a kettle using a voltage of 230V at 0.5A of current for 10 seconds? Assume no heat losses.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy