It is given that f(x)=(x^2 +9x)/((x-1)(x^2 +9)). (i) Express f(x) in partial fractions. (ii) Hence find the integral of f(x) with respect to x.

(i) Let f(x) = A/(x-1) + B/(x2+9). Multiplying through by (x-1)(x2+9) we get x2+9x = A(x2+9) + B(x-1). By substituting x=1 in to eliminate B, we find that A=1 , and by equating coefficients, B=9. Hence f(x)= 1/(x-1) + 9/(x2+9).(ii) ∫ f(x)dx = ln|x-1| + 3arctan(x/3) + c By separating the additive parts of f(x) and integrating them separately with respect to x. This was done by using integration by substitution and the formula ∫ 1/(x2+a2)dx = (arctan(x/a))/a with a=3.

AC
Answered by Amy C. Further Mathematics tutor

3261 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Find the root of the complex 3+4i


Solve the equation 3sinh(2x) = 13 - 3e^(2x), answering in the form 0.5ln(k). where k is an integer


Are we able to represent linear matrix transformations with complex numbers?


Unfortunately this box is to small to contain the question so please see the first paragraph of the answer box for the question.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences