Integrate the function f(x) = (1/6)*x^3 + 1/(3*x^2) with respect to x, between x = 1 and x = 3^(1/2), giving your answer in the form a + b*3^(1/2) where a and b are constants to be determined.

We can imagine our function as a curve. We have x values on the x axis and f(x) values on the y axis of our graph. 

The question is essentially asking us to find the area between the curve, the x axis and the lines x=1 and x=31/2. It is a definite integral.

To integrate our function we simply use the rule that the integral of xis [1/(n+1)]*xn+1.

To make the function easier to work with we can rewrite f(x) as (1/6)*x3 + (1/3)*x-2.

Using the rule above we can integrate this function easily, with respect to x, to get (1/24)*x4 - (1/3)*x-1. Call this new function g(x).

To check we have obtained the correct integral, we can simply differentiate this new function, g(x). If the differential of g(x) is equal to f(x) then we have got the correct integral. It is always smart to do this check when working with integration.

The next step of our solution is to integrate f(x) between the given limits: x = 1 and x = 31/2. To do this we evaluate g(x) at x = 31/2, by simply subbing in the value for x, and then subtract from this answer the value of g(x) at x = 1. 

We should get [3/8 - (1/9)*31/2] - [-7/24].

The final part of our solution is to rearrange our answer to get it in the form a + b*31/2.

The final answer to the question is: 2/3 - (1/9)*31/2.

DV
Answered by Daniel V. Economics tutor

3825 Views

See similar Economics A Level tutors

Related Economics A Level answers

All answers ▸

What is the law of diminishing (marginal) returns?


How does an increase in interest rates affect real GDP?


Explain what is meant when it is said that there are inefficiencies in the production of goods and the allocation of resources.


Explain the 2 ways in which a reduction in interest rates can change consumption in the aggregate demand model of the economy.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning