Integrate the function f(x) = (1/6)*x^3 + 1/(3*x^2) with respect to x, between x = 1 and x = 3^(1/2), giving your answer in the form a + b*3^(1/2) where a and b are constants to be determined.

We can imagine our function as a curve. We have x values on the x axis and f(x) values on the y axis of our graph. 

The question is essentially asking us to find the area between the curve, the x axis and the lines x=1 and x=31/2. It is a definite integral.

To integrate our function we simply use the rule that the integral of xis [1/(n+1)]*xn+1.

To make the function easier to work with we can rewrite f(x) as (1/6)*x3 + (1/3)*x-2.

Using the rule above we can integrate this function easily, with respect to x, to get (1/24)*x4 - (1/3)*x-1. Call this new function g(x).

To check we have obtained the correct integral, we can simply differentiate this new function, g(x). If the differential of g(x) is equal to f(x) then we have got the correct integral. It is always smart to do this check when working with integration.

The next step of our solution is to integrate f(x) between the given limits: x = 1 and x = 31/2. To do this we evaluate g(x) at x = 31/2, by simply subbing in the value for x, and then subtract from this answer the value of g(x) at x = 1. 

We should get [3/8 - (1/9)*31/2] - [-7/24].

The final part of our solution is to rearrange our answer to get it in the form a + b*31/2.

The final answer to the question is: 2/3 - (1/9)*31/2.

DV
Answered by Daniel V. Economics tutor

3750 Views

See similar Economics A Level tutors

Related Economics A Level answers

All answers ▸

Explain the Macro-economic benefits of globalisation.


If mpc = 0.6, what will be the final change in National Income arising from an initial increase in Investment of £200m?


Explain the use of interest rates in the economy.


How does the law of diminishing marginal utility affect the demand for a Veblen good?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning