Describe and explain the first stages of the life cycle of a star before it reaches the main sequence.

The star begins as a stellar nebulae. This is a dense cloud of gas and dust containing hydrogen and helium. As it is under a large amount of gravitational pressure, this nebula will then collapse under gravity and heat up. This occurs due to the conversion of gravitational potential energy to thermal kinetic energy. This collapse results in a disc shaped clump of matter with the centre of gravity focused at the core. This is known as a protostar. Some of the interstellar dust can be ejected during this process. Once the protostar has formed, the dust in the surrounding disc can clump to form planets and often moons. This forms a pre-main sequence star. Eventually, the gravitational pressure will become sufficient to then allow fusion to occur. During this process, hydrogen nuclei convert to helium nuclei resulting in an overall release of a large amount of energy. The star then becomes stable as the outwards push force from nuclear fusion is in equilibrium with the inwards pull force from gravity. This then forms the main sequence star.

LB
Answered by Laura B. Physics tutor

8068 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

What is the difference between plastic and elastic collision?


Explain how an acceleration-displacement graph could be used to determine the frequency of oscillation of a metal plate.


In still air an aircraft flies at 200 m/s . The aircraft is heading due north in still air when it flies into a steady wind of 50 m/s blowing from the west. Calculate the magnitude and direction of the resultant velocity?


Sphere A (mass m), moving with speed 3v, collides with sphere B (mass 2m) which is moving in the opposite direction with speed v. The two spheres then combine, calculate the resulting velocity of the combined spheres.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning