What is De Moivre's theorem?

In complex number ( especially for any real number) x and integer n it holds that

(cos(x) + i(sinx))^n = cos(nx) + isin(nx) where i is the imaginary unit representing as i*i = -1.

This is called  De Moivre's theorem.

This theorem can be proved by Euler's theorem which states 

e^(i*x) = cos(x) + isin(x)

then

(e^(i*x))^n = (cos(x) + isin(x))^n which equals to

e^(ixn) = cos(nx) + isin(nx)

resulting to

 (cos(x) + isin(x))^n = cos(nx) + isin(nx)

BS
Answered by BARUN S. Further Mathematics tutor

12565 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

For what values of x is Cosh^2(x) - Sinh(x) = 5 Give your answer in the form of a logarithm


Given that p≥ -1 , prove by induction that, for all integers n≥1 , (1+p)^k ≥ 1+k*p.


Prove by induction that (n^3)-n is divisible by 3 for all integers n>0 (typical fp1 problem)


Solve the second order ODE, giving a general solution: x'' + 2x' - 3x = 2e^-t


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning