If a car of mass 1000kg travels up a slope inclined at 5 degrees at a speed of 20 meters per second calculate the power output of the car's engine (assuming a resistive force due to friction of 500N)

To find power we are going to need the equation:

P = F v 

Where P is power, F is force and v is velocity

Since the car is travelling at a constant speed up the slope, we know that velocity, v is positive 20 meters per second.

The next step is to determine the force.

In mechanics it is important not to overlook any forces (or components of forces) that might be acting. 

We must consider the force due to gravity and the resistive force due to friction as counterpoints to the driving force of the engine.

First, considering the force due to gravity:

 We must resolve parallel to the plane of the slope, in order to determine the force against which the engine works. This is done by taking the product of mass and the acceleration due to gravity, mg, to find the weight: 10009.81 = 9810 Newtons and then resolving parallel with sin(5), giving 10009.81*sin(5) = 855 (rounded).

Knowing the force due to friction as 500 Newtons, we sum to get F = 855 + 500 = 1355

With our original equation P = F v we have:

P = 1355 * 20 = 27.1 kW

SW
Answered by Sam W. Further Mathematics tutor

30594 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Prove by mathematical induction that 2^(2n-1) + 3^(2n-1) is divisible by 5 for all natural numbers n.


Find the equation of the tangent to the curve y = exp(x) at the point ( a, exp(a) ). Deduce the equation of the tangent to the curve which passes through the point (0,1) .


The point D has polar coordinates ( 6, 3π/4). Find the Cartesian coordinates of D.


A line has Cartesian equations x−p = (y+2)/q = 3−z and a plane has equation r ∙ [1,−1,−2] = −3. In the case where the angle θ between the line and the plane satisfies sin⁡θ=1/√6 and the line intersects the plane at z = 0. Find p and q.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning