How do you prove Kepler's Third Law?

For starters, what exactly is Kepler's Third Law?

Kepler's Third Law states that the square of the time period of orbit is directly proportional to the cuber of the semi-major axis of that respective orbit. (the semi-major axis for a circular orbit is of course the radius) Mathematically this can be represented as: T2 / r3 = k where k is a constant. The value k is related to physical constants such that k = 4pi2/GM where G is the gravitational constant and M the mass of the object at the centre of the orbit (NOT the object doing the orbiting!)

 

How did Kepler arrive at this result? Unfortunately, through experiment, which is not particularly convenient for us, but, thankfully we have knowledge Kepler had not! 

 

The result can be obtained surprisingly easily, assuming we have the necessary tools. 

We will need the following four equations:

Circular Motion: a = v2/r; v = wr = 2pi/T

Gravitational attraction: F = GMm/r2 

Newton's Second Law: F = ma

 

Substituting circular motion and gravitational attraction into the above formula yields:

mv2/r = Gmm/r2 

Cancelling the m's multiplying by r and by GM gives:

v2/GM = 1/r

This is very close to the result we want, one more substitution should give us the desired equation. Notice that v = wr = 2rpi/T from circular motion equations.

And so we have:

4pi2/GMT= 1/r3

Multiplying by T2:

T2/r= 4pi2/GM as required!

DB
Answered by Daniel B. Physics tutor

71375 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A coil is connected to an analogue centre zero ammeter. A magnet is dropped (North pole first) so that it falls vertically and completely through the coil. What would be observe on the ammeter?


Explain why for heavy nuclei there is imbalance in the number of protons and neutrons. Give reference to the range and particle type of the forces that influence this imbalance.


Derive an expression for the time taken, (t) for a test mass to fall to the ground from a height (h) in a uniform gravitational field (g = 9.81 ms^-2)


What is the change in temperature of 2kg of water heated by a kettle using a voltage of 230V at 0.5A of current for 10 seconds? Assume no heat losses.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences