How do you prove Kepler's Third Law?

For starters, what exactly is Kepler's Third Law?

Kepler's Third Law states that the square of the time period of orbit is directly proportional to the cuber of the semi-major axis of that respective orbit. (the semi-major axis for a circular orbit is of course the radius) Mathematically this can be represented as: T2 / r3 = k where k is a constant. The value k is related to physical constants such that k = 4pi2/GM where G is the gravitational constant and M the mass of the object at the centre of the orbit (NOT the object doing the orbiting!)

 

How did Kepler arrive at this result? Unfortunately, through experiment, which is not particularly convenient for us, but, thankfully we have knowledge Kepler had not! 

 

The result can be obtained surprisingly easily, assuming we have the necessary tools. 

We will need the following four equations:

Circular Motion: a = v2/r; v = wr = 2pi/T

Gravitational attraction: F = GMm/r2 

Newton's Second Law: F = ma

 

Substituting circular motion and gravitational attraction into the above formula yields:

mv2/r = Gmm/r2 

Cancelling the m's multiplying by r and by GM gives:

v2/GM = 1/r

This is very close to the result we want, one more substitution should give us the desired equation. Notice that v = wr = 2rpi/T from circular motion equations.

And so we have:

4pi2/GMT= 1/r3

Multiplying by T2:

T2/r= 4pi2/GM as required!

DB
Answered by Daniel B. Physics tutor

75197 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A 0.20 kg mass is whirled round in a vertical circle on the end of a light string of length 0.90 m. At the top point of the circle the speed of the mass is 8.2 m/s. What is the tension in the string at this point?


What happens to ice when energy is supplied at a constant rate in terms of the changes in energy of the molecules?


A yacht is sailing through water that is flowing due west at 2m/s. The velocity of the yacht relative to the water is 6m/s due south. The yacht has a resultant velocity of V m/s on a bearing of theta. Find V and theta


A car travelling at 28 m/s brakes until it stops completely after travelling a distance of 15 m. Calculate the deceleration of the car.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning