Find the set of values for which: 3/(x+3) >(x-4)/x

First we must consider for which values of x the equation: 3/(x+3) = (x-4)/x is undefined. In this case, x=-3, and x=0. 

Now we must consider each of the cases, x<-3, -3<x<0, 0<x

Case 1 (x<-3): if we assume 3/(x+3) > (x-4)/x then it follows, as x<-3, 3x > x2-x-12. Which implies (x-6)(x+2) < 0. For this to hold exactly one of (x-6) and (x+2) must be less than 0 and the other greater than 0. which implies -2<x<4, which is a contradiction therfore not satisfied in the range.

Case 2 (-3<x<0)  x2-4x-12 > 0, which implies (x-6)(x+2) >0. Therefore for x2-4x-12 > 0, either both (x-6) and (x+2) must be less than 0 or greater than 0. therefore x<-2 or x>6. Therefore as we know -3<x<0, it holds for -3<x<-2

Case 3 (x>0): Therefore x2-4x-12 < 0, which implies (x-6)(x+2) < 0. For this to hold exactly one of (x-6) and (x+2) must be less than 0 and the other greater than 0. which implies -2<x<4, thefore the equation holds for 0<x<4

Finally as we have considered all cases the final answer is -3<x<-2 & 0<x<4.

DM
Answered by David M. Further Mathematics tutor

4908 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Let A, B and C be nxn matrices such that A=BC-CB. Show that the trace of A (denoted Tr(A)) is 0, where the trace of an nxn matrix is defined as the sum of the entries along the leading diagonal.


Express sin(5theta) in terms of sin(theta) and powers of sin(theta) only.


Why does matrix multiplication seem so unintuitive and weird?!


Given that the equation x^2 - 2x + 2 = 0 has roots A and B, find the values A + B, and A * B.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences