How do you use derivatives to categorise stationary points?

When investigating graphs, you will often be asked to pick out features of the graph; stationary points being the most popular. You will need to know that a stationary point on f(x) can be found by solving the following equation: f'(x)=0.Once you have found the stationary points, you will need to find the second derivative of the graph, also known as f''(x). By finding the values of f''(x) at the x-coordinates where stationary points exist, you can categorise the stationary points.If f''(x) > 0, then the stationary point is a minimum point.If f''(x) < 0, then the stationary point is a maximum point.If f''(x) = 0, then the stationary point is a point of inflection.

AW
Answered by Alex W. Further Mathematics tutor

3855 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

In the expansion of (x-7)(3x**2+kx-3) the coefficient of x**2 is 0. i) Find the value of k ii) Find the coefficient of x. iii) write the fully expanded equation in terms of x


How would you differentiate x^x?


If the equation of a curve is x^2 + 9x + 8 = y, then differentiate it.


Find the x and y coordinates of the minimum of the following equation: y = x^2 - 14x + 55.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning