How do you use derivatives to categorise stationary points?

When investigating graphs, you will often be asked to pick out features of the graph; stationary points being the most popular. You will need to know that a stationary point on f(x) can be found by solving the following equation: f'(x)=0.Once you have found the stationary points, you will need to find the second derivative of the graph, also known as f''(x). By finding the values of f''(x) at the x-coordinates where stationary points exist, you can categorise the stationary points.If f''(x) > 0, then the stationary point is a minimum point.If f''(x) < 0, then the stationary point is a maximum point.If f''(x) = 0, then the stationary point is a point of inflection.

AW
Answered by Alex W. Further Mathematics tutor

3520 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

A curve is defined by the equation y = (x + 3)(x – 4). Find the coordinates of the turning point of the curve.


(x+4)((x^2) - kx - 5) is expanded and simplified. The coefficient of the x^2 term twice the coefficient of the x term. Work out the value of k.


Finding the derivative of a polynomial.


The function f is given by f(x) = SQRT(2x − 5). Work out x when f(x) = 1.2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning