A stationary radium atom decays, emiting an alpha particle. Why is the recoil speed of the nucleus small compared to the alpha particle?

Initially the momentum is zero.

Due to conservation of momentum, the alpha particle and radium nucleus must gain equal but opposite momentum.

The mass of the radium nucleus is greater than the mass of the alpha particle.

Therefore, the alpha particle has a much greater speed after emission than the radium nucleus. (p = mv)

Answered by Daisy D. Physics tutor

8668 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Explain what is meant by the term 'absolute zero'


If you have 1.33g of oxygen (Mr = 32) in a container of volume 1000cm^3 at atmospheric pressure (101.3*10^3 Pa), what is the temperature of the gas in Celsius? R=8.314


An ideal gas at a temperature of 22 C is trapped in a metal cylinder of volume 0.2 m^3 at a pressure of 1.6x10^6 Pa. The gas has a molar mass of 4.3 x 10^(-2) kg mol^(-1). Calculate the density of the gas in the cylinder.


Use the kinetic theory of gases to explain why the pressure inside a container increases when the temperature of the air inside it rises. Assume that the volume of the container remains constant.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy