A stationary radium atom decays, emiting an alpha particle. Why is the recoil speed of the nucleus small compared to the alpha particle?

Initially the momentum is zero.

Due to conservation of momentum, the alpha particle and radium nucleus must gain equal but opposite momentum.

The mass of the radium nucleus is greater than the mass of the alpha particle.

Therefore, the alpha particle has a much greater speed after emission than the radium nucleus. (p = mv)

DD
Answered by Daisy D. Physics tutor

10700 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

State Faraday's Law of electromagnetic induction, both qualitatively and quantitatively. How is Lenz's Law included in this? (4 marks)


Describe the interaction that is responsible for keeping protons and neutrons together in a stable nucleus.


A ball is kicked off a cliff at a height of 20m above ground and an angle of 30 degree from the horizontal, it follows projectile motion and lands after a time t. Its velocity at the maximum height it reaches is 20m/s, how long does it take it to land?


Calculate the kinetic energy of a proton moving at 95% of the speed of light. (c = 3x10^8 m/s, m_p = 1.67x10^-27 kg) [4 marks]


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning