What is the range of solutions for the inequality 2(3x+1) > 3-4x?

When it comes to answering questions about inequalities, it is important to remember the signs and what they represent. In this instance, we need to find a range of solutions where 2(3x+1) is greater than 3-4x. 
To solve this inequality, we need to make x the subject of the inequality. First, we need to expand 2(3x+1) to get 6x+2. Now we have the inequality 6x+2>3-4x. Next we rearrange to make x the subject. By adding 4x to both sides and subtracting 2 from both sides, we get the inequality 10x>1. Finally, we divide both sides by 10 to get x by itself. The simplified inequality is x>1/10. Therefore the answer to the question is the range of solutions for the inequality 2(3x+1)>3-4x is x is greater than 1/10. 

SK
Answered by Samradnyee K. Further Mathematics tutor

4191 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

If y=(x^2)*(x-10), work out dy/dx


Use differentiation to show the function f(x)=2x^3–12x^2+25x–11 is an increasing function for all values of x


Differentiate y = x*cos(2x)


A curve is defined by the equation y = (x + 3)(x – 4). Find the coordinates of the turning point of the curve.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning