Given that f(x)=2sinhx+3coshx, solve the equation f(x)=5 giving your answers exactly.

Firstly set 2sinhx+3coshx=5Now using the exponential definitions of sinhx and coshx rewrite the equation to give:2(1/2(e^x-e^-x))+3(1/2(e^x+e^-x))=5Simplify the equation by expanding out the brackets, multipling by 2 to eliminate fractions and collecting like terms together, as so:e^x-e^-x+3/2e^x+3/2e^-x=52e^x-2e^-x+3e^x+3e^-x=105e^x+e^-x=105e^x+e^-x-10=0e^-x is equivalent to 1/e^x therefore multiply through by e^x to get a quadratic equation in e^x5e^2x-10e^x+1=0Now using the quadratic equation (where a=5, b=-10 and c=1) solve for e^xI will indicate 'plus or minus' by +/- (not to be confused with plus, divide, minus)e^x=(-(-10)+/-√(-10)^2-4(5)(1))/2(5)e^x=(10+/-√80)/10e^x=1+/-(2√5)/5To solve for x you must take the natural logarithm of both sides as (ln^e=1) sox=ln(1+(2√5)/5orx=ln(1-(2√5)/5)

ES
Answered by Emily-Louisa S. Further Mathematics tutor

7303 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Simplify i^{4}?


Find the eigenvalues and eigenvectors of the matrix M , where M{2,2} = (1/2 2/3 ; 1/2 1/3) Hence express M in the form PDP^-1 where D is a diagonal matrix.


It is given that f(x) = 2sinhx+3coshx. Show that the curve y = f(x) has a stationary point at x =-½ ln(5) and find the value of y at this point. Solve the equation f(x) = 5, giving your answers exactly


The ODE mx'' + cx' + kx = 0 is used to model a damped mass-spring system, where m is the mass, c is the damping constant and k is the spring constant. Describe and explain the behaviour of the system for the cases: (a) c^2>4mk; (b) c^2=4mk; (c) c^2<4mk.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences